6 Commits
0.8.0 ... 0.8.1

Author SHA1 Message Date
bb16c871c9 changed: the way of parsing operators in the mathematical parser
(the parser is not too much greedy now)


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@38 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-17 13:42:19 +00:00
2116418f08 added: UInt::BitAnd(), UInt::BitOr(), UInt::BitXor(), UInt::BitNot(),
Big::BitAnd(), Big::BitOr(), Big::BitXor()
added: to the parser: bitand(), bitor(), bitxor()
       /band(), bor(), bxor()/


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@36 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-13 18:14:11 +00:00
062881900a changed: small changes in: Big::SetPi(), Big::Set05Pi(), Big::Set2Pi(),
Big::ChangeSign()
added:   ASinh(), ACosh(), ATanh() /ATgh()/, ACoth() /ACtgh()/
         and to the parser as well


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@35 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-12 17:17:22 +00:00
0170572f84 added: doxygen.cfg for generating a documentation from the doxygen
changed: UInt::Rcl(uint c=0) and UInt::Rcr(uint c=0) into
        UInt::Rcl2(uint bits, uint c) and UInt::Rcr2(uint bits, uint c)
        now they can move more than one bit and they are only private
fixed: UInt::Rcl(uint bits, uint c) and UInt::Rcr(uint bits, uint c)
       didn't correctly return a carry if the 'bits' were equal
       to 'value_size*TTMATH_BITS_PER_UINT'
changed: UInt::Rcl(uint bits, uint c) and UInt::Rcr(uint bits, uint c)
        into UInt::Rcl(uint bits, uint c=0) and
        UInt::Rcr(uint bits, uint c=0)
        they are faster now when the bits is greater than a half of
        the TTMATH_BITS_PER_UINT
changed: UInt::CompensationToLeft() it's faster now
changed: more small changes where there were UInt::Rcl(uint c=0) and
       UInt::Rcr(uint c=0) used


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@34 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-11 22:14:17 +00:00
e40ed603c6 added: UInt::MulInt(int, UInt<int another_size>::&)
added: Big::MulUInt(uint)
changed: Big::MulInt(sint)
added: Big::ToUInt(uint &)
changed: Big::ToInt(sint&)
changed: Factorial() it uses Big::MulUInt() at the beginning
         (faster now especially more on a 32bit platform)


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@33 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-07 22:21:31 +00:00
c97ebf282f fixed: Big::PowFrac(..) didn't return a correct error code
(when 'this' was negative)
added: Root(x; index) (and to the parser as well)
added: macro: TTMATH_PRERELEASE_VER (can be either zero or one)


git-svn-id: svn://ttmath.org/publicrep/ttmath/trunk@32 e52654a7-88a9-db11-a3e9-0013d4bc506e
2007-04-05 19:08:15 +00:00
10 changed files with 2628 additions and 211 deletions

View File

@@ -1,3 +1,41 @@
Version 0.8.1 (2007.04.17):
* fixed: Big::PowFrac(..) didn't return a correct error code
(when 'this' was negative)
* added: Root(x; index) (and to the parser as well)
* added: macro: TTMATH_PRERELEASE_VER (can be either zero or one)
* added: UInt::MulInt(int, UInt<int another_size>::&)
* added: Big::MulUInt(uint)
* changed: Big::MulInt(sint)
* added: Big::ToUInt(uint &)
* changed: Big::ToInt(sint&)
* changed: Factorial() it uses Big::MulUInt() at the beginning
(faster now especially more on a 32bit platform)
* added: doxygen.cfg for generating a documentation from the doxygen
* changed: UInt::Rcl(uint c=0) and UInt::Rcr(uint c=0) into
UInt::Rcl2(uint bits, uint c) and UInt::Rcr2(uint bits, uint c)
now they can move more than one bit and they are only private
* fixed: UInt::Rcl(uint bits, uint c) and UInt::Rcr(uint bits, uint c)
didn't correctly return a carry if the 'bits' were equal
to 'value_size*TTMATH_BITS_PER_UINT'
* changed: UInt::Rcl(uint bits, uint c) and UInt::Rcr(uint bits, uint c)
into UInt::Rcl(uint bits, uint c=0) and
UInt::Rcr(uint bits, uint c=0)
they are faster now when the bits is greater than a half of
the TTMATH_BITS_PER_UINT
* changed: UInt::CompensationToLeft() it's faster now
* changed: more small changes where there were UInt::Rcl(uint c=0) and
UInt::Rcr(uint c=0) used
* changed: as the Big type uses UInt::Rcl() and UInt::Rcr() a lot then
it is much faster now (about 5-25%)
* added: ASinh(), ACosh(), ATanh() /ATgh()/, ACoth() /ACtgh()/
and to the parser as well
* added: UInt::BitAnd(), UInt::BitOr(), UInt::BitXor(), UInt::BitNot(),
Big::BitAnd(), Big::BitOr(), Big::BitXor()
* added: to the parser: bitand(), bitor(), bitxor()
/band(), bor(), bxor()/
* changed: the way of parsing operators in the mathematical parser
(the parser is not too much greedy now)
Version 0.8.0 (2007.03.28):
* added: into the parser: SetFactorialMax()
* added: DegToDeg(deg, min, sec), DegToRad(deg), DegToRad(deg, min, sec),

2
README
View File

@@ -21,4 +21,4 @@ to do is to use 'include' directive of the preprocessor. How big the
values can be is set directly in the source code by the programmer.
Author: Tomasz Sowa <t.sowa AnTispam slimaczek.pl>
Home page: http://sourceforge.net/projects/ttmath
Project page: http://sourceforge.net/projects/ttmath

4
TODO
View File

@@ -1,7 +1,5 @@
TODO TTMath Library
===================
* Add bitwise operators (or functions) and, or, xor
* Add functions for generating random values
* Add something like NaN to the Big<> type

1257
doxygen.cfg Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1171,6 +1171,173 @@ namespace ttmath
}
/*
*
* inverse hyperbolic functions
*
*
*/
/*!
inverse hyperbolic sine
asinh(x) = ln( x + sqrt(x^2 + 1) )
*/
template<class ValueType>
ValueType ASinh(const ValueType & x, ErrorCode * err = 0)
{
ValueType xx(x), one, result;
uint c = 0;
one.SetOne();
c += xx.Mul(x);
c += xx.Add(one);
one.exponent.SubOne(); // one=0.5
// xx is >= 1
c += xx.PowFrac(one); // xx=sqrt(xx)
c += xx.Add(x);
c += result.Ln(xx); // xx > 0
// here can only be a carry
if( err )
*err = c ? err_overflow : err_ok;
return result;
}
/*!
inverse hyperbolic cosine
acosh(x) = ln( x + sqrt(x^2 - 1) ) x in <1, infinity)
*/
template<class ValueType>
ValueType ACosh(const ValueType & x, ErrorCode * err = 0)
{
ValueType xx(x), one, result;
uint c = 0;
one.SetOne();
if( x < one )
{
if( err )
*err = err_improper_argument;
return result;
}
c += xx.Mul(x);
c += xx.Sub(one);
// xx is >= 0
// we can't call a PowFrac when the 'x' is zero
// if x is 0 the sqrt(0) is 0
if( !xx.IsZero() )
{
one.exponent.SubOne(); // one=0.5
c += xx.PowFrac(one); // xx=sqrt(xx)
}
c += xx.Add(x);
c += result.Ln(xx); // xx >= 1
// here can only be a carry
if( err )
*err = c ? err_overflow : err_ok;
return result;
}
/*!
inverse hyperbolic tangent
atanh(x) = 0.5 * ln( (1+x) / (1-x) ) x in (-1, 1)
*/
template<class ValueType>
ValueType ATanh(const ValueType & x, ErrorCode * err = 0)
{
ValueType nominator(x), denominator, one, result;
uint c = 0;
one.SetOne();
if( !x.SmallerWithoutSignThan(one) )
{
if( err )
*err = err_improper_argument;
return result;
}
c += nominator.Add(one);
denominator = one;
c += denominator.Sub(x);
c += nominator.Div(denominator);
c += result.Ln(nominator);
c += result.exponent.SubOne();
// here can only be a carry
if( err )
*err = c ? err_overflow : err_ok;
return result;
}
/*!
inverse hyperbolic tantent
*/
template<class ValueType>
ValueType ATgh(const ValueType & x, ErrorCode * err = 0)
{
return ATanh(x, err);
}
/*!
inverse hyperbolic cotangent
acoth(x) = 0.5 * ln( (x+1) / (x-1) ) x in (-infinity, -1) or (1, infinity)
*/
template<class ValueType>
ValueType ACoth(const ValueType & x, ErrorCode * err = 0)
{
ValueType nominator(x), denominator(x), one, result;
uint c = 0;
one.SetOne();
if( !x.GreaterWithoutSignThan(one) )
{
if( err )
*err = err_improper_argument;
return result;
}
c += nominator.Add(one);
c += denominator.Sub(one);
c += nominator.Div(denominator);
c += result.Ln(nominator);
c += result.exponent.SubOne();
// here can only be a carry
if( err )
*err = c ? err_overflow : err_ok;
return result;
}
/*!
inverse hyperbolic cotantent
*/
template<class ValueType>
ValueType ACtgh(const ValueType & x, ErrorCode * err = 0)
{
return ACoth(x, err);
}
/*
@@ -1342,6 +1509,266 @@ namespace ttmath
}
namespace auxiliaryfunctions
{
template<class ValueType>
bool RootCheckIndexSign(ValueType & x, const ValueType & index, ErrorCode * err)
{
if( index.IsSign() )
{
// index cannot be negative
if( err )
*err = err_improper_argument;
return true;
}
return false;
}
template<class ValueType>
bool RootCheckIndexZero(ValueType & x, const ValueType & index, ErrorCode * err)
{
if( index.IsZero() )
{
if( x.IsZero() )
{
// there isn't root(0;0)
if( err )
*err = err_improper_argument;
return true;
}
// root(x;0) is 1 (if x!=0)
x.SetOne();
if( err )
*err = err_ok;
return true;
}
return false;
}
template<class ValueType>
bool RootCheckIndexOne(ValueType & x, const ValueType & index, ErrorCode * err)
{
ValueType one;
one.SetOne();
if( index == one )
{
//root(x;1) is x
// we do it because if we used the PowFrac function
// we would lose the precision
if( err )
*err = err_ok;
return true;
}
return false;
}
template<class ValueType>
bool RootCheckIndexFrac(ValueType & x, const ValueType & index, ErrorCode * err)
{
ValueType indexfrac(index);
indexfrac.RemainFraction();
if( !indexfrac.IsZero() )
{
// index must be integer
if( err )
*err = err_improper_argument;
return true;
}
return false;
}
template<class ValueType>
bool RootCheckXZero(ValueType & x, const ValueType & index, ErrorCode * err)
{
if( x.IsZero() )
{
// root(0;index) is zero (if index!=0)
x.SetZero();
if( err )
*err = err_ok;
return true;
}
return false;
}
template<class ValueType>
bool RootCheckIndex(ValueType & x, const ValueType & index, ErrorCode * err, bool * change_sign)
{
*change_sign = false;
if( index.Mod2() )
{
// index is odd (1,3,5...)
if( x.IsSign() )
{
*change_sign = true;
x.Abs();
}
}
else
{
// index is even
// x cannot be negative
if( x.IsSign() )
{
if( err )
*err = err_improper_argument;
return true;
}
}
return false;
}
}
/*!
indexth Root of x
index must be integer and not negative <0;1;2;3....)
if index==0 the result is one
if x==0 the result is zero and we assume root(0;0) is not defined
if index is even (2;4;6...) the result is x^(1/index) and x>0
if index is odd (1;2;3;...) the result is either
-(abs(x)^(1/index)) if x<0 or
x^(1/index)) if x>0
(for index==1 the result is equal x)
*/
template<class ValueType>
ValueType Root(ValueType x, const ValueType & index, ErrorCode * err = 0)
{
using namespace auxiliaryfunctions;
if( RootCheckIndexSign(x, index, err) ) return x;
if( RootCheckIndexZero(x, index, err) ) return x;
if( RootCheckIndexOne (x, index, err) ) return x;
if( RootCheckIndexFrac(x, index, err) ) return x;
if( RootCheckXZero(x, index, err) ) return x;
// index integer and index!=0
// x!=0
uint c = 0;
bool change_sign;
if( RootCheckIndex(x, index, err, &change_sign ) ) return x;
ValueType newindex;
newindex.SetOne();
c += newindex.Div(index);
c += x.PowFrac(newindex); // here can only be a carry
if( change_sign )
x.SetSign();
if( err )
*err = c ? err_overflow : err_ok;
return x;
}
namespace auxiliaryfunctions
{
template<class ValueType>
uint FactorialInt( const ValueType & x, ErrorCode * err,
const volatile StopCalculating * stop,
ValueType & result)
{
uint maxvalue = TTMATH_UINT_MAX_VALUE;
if( x < TTMATH_UINT_MAX_VALUE )
x.ToUInt(maxvalue);
uint multipler = 1;
uint carry = 0;
while( !carry && multipler<maxvalue )
{
if( stop && stop->WasStopSignal() )
{
if( err )
*err = err_interrupt;
return 2;
}
++multipler;
carry += result.MulUInt(multipler);
}
if( err )
*err = carry ? err_overflow : err_ok;
return carry ? 1 : 0;
}
template<class ValueType>
int FactorialMore( const ValueType & x, ErrorCode * err,
const volatile StopCalculating * stop,
ValueType & result)
{
ValueType multipler(TTMATH_UINT_MAX_VALUE);
ValueType one;
one.SetOne();
uint carry = 0;
while( !carry && multipler < x )
{
if( stop && stop->WasStopSignal() )
{
if( err )
*err = err_interrupt;
return 2;
}
carry += multipler.Add(one);
carry += result.Mul(multipler);
}
if( err )
*err = carry ? err_overflow : err_ok;
return carry ? 1 : 0;
}
} // namespace
/*!
the factorial from given 'x'
e.g.
@@ -1350,6 +1777,8 @@ namespace ttmath
template<class ValueType>
ValueType Factorial(const ValueType & x, ErrorCode * err = 0, const volatile StopCalculating * stop = 0)
{
using namespace auxiliaryfunctions;
static History<ValueType> history;
ValueType result;
@@ -1384,33 +1813,17 @@ namespace ttmath
return result;
}
ValueType multipler;
ValueType one;
uint carry = 0;
one = result; // =1
multipler = result; // =1
while( !carry && multipler < x )
{
if( stop && stop->WasStopSignal() )
{
if( err )
*err = err_interrupt;
uint status = FactorialInt(x, err, stop, result);
if( status == 0 )
status = FactorialMore(x, err, stop, result);
if( status == 2 )
// the calculation has been interrupted
return result;
}
carry += multipler.Add(one);
carry += result.Mul(multipler);
}
err_tmp = carry ? err_overflow : err_ok;
err_tmp = status==1 ? err_overflow : err_ok;
history.Add(x, result, err_tmp);
if( err )
*err = carry ? err_overflow : err_ok;
return result;
}
@@ -1432,7 +1845,7 @@ namespace ttmath
/*!
it returns the sign of the value
e.g. -2 = 1
e.g. -2 = -1
0 = 0
10 = 1
*/

View File

@@ -182,10 +182,13 @@ public:
}
private:
/*!
it sets value pi
sets the mantissa of the value pi
*/
void SetPi()
void SetMantissaPi()
{
// this is a static table which represents the value Pi (mantissa of it)
// (first is the highest word)
@@ -223,8 +226,19 @@ public:
// and on 64bit platform value 64 (128/2=64))
mantissa.SetFromTable(temp_table, sizeof(temp_table) / sizeof(int));
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
}
public:
/*!
sets the value of pi
*/
void SetPi()
{
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 2;
}
@@ -233,7 +247,8 @@ public:
*/
void Set05Pi()
{
SetPi();
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 1;
}
@@ -243,7 +258,8 @@ public:
*/
void Set2Pi()
{
SetPi();
SetMantissaPi();
info = 0;
exponent = -sint(man)*sint(TTMATH_BITS_PER_UINT) + 3;
}
@@ -450,7 +466,7 @@ public:
/*!
it remains the 'sign' of the value
e.g. -2 = 1
e.g. -2 = -1
0 = 0
10 = 1
*/
@@ -495,10 +511,16 @@ public:
*/
void ChangeSign()
{
if( info & TTMATH_BIG_SIGN )
{
info &= ~TTMATH_BIG_SIGN;
return;
}
if( IsZero() )
return;
info = (info & (~TTMATH_BIG_SIGN)) | ((~info) & TTMATH_BIG_SIGN);
info |= TTMATH_BIG_SIGN;
}
@@ -527,7 +549,7 @@ public:
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
// (1) abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
@@ -545,11 +567,12 @@ public:
else
if( exp_offset < mantissa_size_in_bits )
{
// moving 'exp_offset' times
// (2) moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
}
else
{
// (3)
// exp_offset == mantissa_size_in_bits
// we're rounding 'this' about one (up or down depending on a ss2 sign)
ss2.mantissa.SetOne();
@@ -561,18 +584,19 @@ public:
// values have the same signs
if( mantissa.Add(ss2.mantissa) )
{
mantissa.Rcr(1);
mantissa.Rcr(1,1);
c = exponent.AddOne();
}
}
else
{
// values have different signs
if( mantissa.Sub(ss2.mantissa) )
{
mantissa.Rcl(1);
c = exponent.SubOne();
}
// there shouldn't be a carry here because
// (1) (2) and (3) guarantee that the mantissa of this
// is greater than the mantissa of the ss2
uint c_temp = mantissa.Sub(ss2.mantissa);
TTMATH_ASSERT( c_temp == 0 )
}
c += Standardizing();
@@ -593,7 +617,213 @@ public:
return Add(ss2);
}
/*!
bitwise AND
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitAnd(Big<exp, man> ss2)
{
if( IsSign() || ss2.IsSign() )
return 2;
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
{
// the second value is too short
SetZero();
return 0;
}
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitAnd(ss2.mantissa);
c += Standardizing();
return (c==0)? 0 : 1;
}
/*!
bitwise OR
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitOr(Big<exp, man> ss2)
{
if( IsSign() || ss2.IsSign() )
return 2;
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
// the second value is too short
return 0;
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitOr(ss2.mantissa);
c += Standardizing();
return (c==0)? 0 : 1;
}
/*!
bitwise XOR
this and ss2 must be >= 0
return values:
0 - ok
1 - carry
2 - this or ss2 was negative
*/
uint BitXor(Big<exp, man> ss2)
{
if( IsSign() || ss2.IsSign() )
return 2;
Int<exp> exp_offset( exponent );
Int<exp> mantissa_size_in_bits( man * TTMATH_BITS_PER_UINT );
uint c = 0;
exp_offset.Sub( ss2.exponent );
exp_offset.Abs();
// abs(this) will be >= abs(ss2)
if( SmallerWithoutSignThan(ss2) )
{
Big<exp, man> temp(ss2);
ss2 = *this;
*this = temp;
}
if( exp_offset >= mantissa_size_in_bits )
// the second value is too short
return 0;
// exp_offset < mantissa_size_in_bits, moving 'exp_offset' times
ss2.mantissa.Rcr( exp_offset.ToInt(), 0 );
mantissa.BitXor(ss2.mantissa);
c += Standardizing();
return (c==0)? 0 : 1;
}
/*!
Multiplication this = this * ss2 (ss2 is uint)
ss2 without a sign
*/
uint MulUInt(uint ss2)
{
UInt<man+1> man_result;
uint i,c = 0;
// man_result = mantissa * ss2.mantissa
mantissa.MulInt(ss2, man_result);
int bit = UInt<man>::FindLeadingBitInWord(man_result.table[man]); // man - last word
if( bit!=-1 && uint(bit) > (TTMATH_BITS_PER_UINT/2) )
{
// 'i' will be from 0 to TTMATH_BITS_PER_UINT
i = man_result.CompensationToLeft();
c = exponent.Add( TTMATH_BITS_PER_UINT - i );
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man_result.table[i+1];
}
else
{
if( bit != -1 )
{
man_result.Rcr(bit+1, 0);
c += exponent.Add(bit+1);
}
for(i=0 ; i<man ; ++i)
mantissa.table[i] = man_result.table[i];
}
c += Standardizing();
return (c==0)? 0 : 1;
}
/*!
Multiplication this = this * ss2 (ss2 is sint)
ss2 with a sign
*/
uint MulInt(sint ss2)
{
if( IsSign() == (ss2<0) )
{
// the signs are the same, the result is positive
Abs();
}
else
{
// the signs are different, the result is negative
SetSign();
}
if( ss2<0 )
ss2 = 0 - ss2;
return MulUInt( uint(ss2) );
}
/*!
multiplication this = this * ss2
this method returns carry
@@ -747,7 +977,7 @@ public:
if( start.Mul(start) )
return 1;
pow.Rcr();
pow.Rcr(1);
}
*this = result;
@@ -883,6 +1113,7 @@ public:
pow can be negative and with fraction
return values:
0 - ok
1 - carry
2 - incorrect argument ('this')
*/
@@ -892,6 +1123,10 @@ public:
Big<exp, man> temp;
uint c = temp.Ln(*this);
if( c!= 0 )
return c;
c += temp.Mul(pow);
c += Exp(temp);
@@ -904,6 +1139,7 @@ public:
pow can be negative and with fraction
return values:
0 - ok
1 - carry
2 - incorrect argument ('this' or 'pow')
*/
@@ -1269,6 +1505,48 @@ public:
*
*/
/*!
this method sets 'result' as the one word of type uint
if the value is too big this method returns a carry (1)
*/
uint ToUInt(uint & result, bool test_sign = true) const
{
result = 0;
if( IsZero() )
return 0;
if( test_sign && IsSign() )
// the result should be positive
return 1;
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
if( exponent > maxbit + sint(TTMATH_BITS_PER_UINT) )
// if exponent > (maxbit + sint(TTMATH_BITS_PER_UINT)) the value can't be passed
// into the 'sint' type (it's too big)
return 1;
if( exponent <= maxbit )
// our value is from the range of (-1,1) and we return zero
return 0;
UInt<man> mantissa_temp(mantissa);
// exponent is from a range of (maxbit, maxbit + sint(TTMATH_BITS_PER_UINT) >
sint how_many_bits = exponent.ToInt();
// how_many_bits is negative, we'll make it positive
how_many_bits = -how_many_bits;
// we're taking into account only the last word in a mantissa table
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
result = mantissa_temp.table[ man-1 ];
return 0;
}
/*!
this method sets 'result' as the one word of type sint
@@ -1278,42 +1556,23 @@ public:
uint ToInt(sint & result) const
{
result = 0;
uint result_uint;
if( IsZero() )
return 0;
sint maxbit = -sint(man*TTMATH_BITS_PER_UINT);
if( exponent > maxbit + sint(TTMATH_BITS_PER_UINT) )
// if exponent > (maxbit + sint(TTMATH_BITS_PER_UINT)) the value can't be passed
// into the 'sint' type (it's too big)
if( ToUInt(result_uint, false) )
return 1;
if( exponent <= maxbit )
// our value is from range (-1,1) and we return zero
return 0;
UInt<man> mantissa_temp(mantissa);
// exponent is from a range of (-maxbit,0>
sint how_many_bits = exponent.ToInt();
// how_many_bits is negative, we'll make it positive
how_many_bits = -how_many_bits;
// we're taking into an account only the last word in a mantissa table
mantissa_temp.Rcr( how_many_bits % TTMATH_BITS_PER_UINT, 0 );
result = mantissa_temp.table[ man-1 ];
result = static_cast<sint>( result_uint );
// the exception for the minimal value
if( IsSign() && result == TTMATH_UINT_HIGHEST_BIT )
if( IsSign() && result_uint == TTMATH_UINT_HIGHEST_BIT )
return 0;
if( (result & TTMATH_UINT_HIGHEST_BIT) != 0 )
if( (result_uint & TTMATH_UINT_HIGHEST_BIT) != 0 )
// the value is too big
return 1;
if( IsSign() )
result = -sint(result);
result = -result;
return 0;
}
@@ -1337,7 +1596,6 @@ public:
if( exponent > maxbit + sint(int_size*TTMATH_BITS_PER_UINT) )
// if exponent > (maxbit + sint(int_size*TTMATH_BITS_PER_UINT)) the value can't be passed
// into the 'Int<int_size>' type (it's too big)
return 1;
if( exponent <= maxbit )
// our value is from range (-1,1) and we return zero

View File

@@ -618,6 +618,7 @@ void Factorial(int sindex, int amount_of_args, ValueType & result)
Error( err );
}
void Abs(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 1 )
@@ -1030,6 +1031,133 @@ void Coth(int sindex, int amount_of_args, ValueType & result)
}
void Root(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 2 )
Error( err_improper_amount_of_arguments );
ErrorCode err;
result = ttmath::Root(stack[sindex].value, stack[sindex+2].value, &err);
if( err != err_ok )
Error( err );
}
void ASinh(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 1 )
Error( err_improper_amount_of_arguments );
ErrorCode err;
result = ttmath::ASinh(stack[sindex].value, &err);
if( err != err_ok )
Error( err );
}
void ACosh(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 1 )
Error( err_improper_amount_of_arguments );
ErrorCode err;
result = ttmath::ACosh(stack[sindex].value, &err);
if( err != err_ok )
Error( err );
}
void ATanh(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 1 )
Error( err_improper_amount_of_arguments );
ErrorCode err;
result = ttmath::ATanh(stack[sindex].value, &err);
if( err != err_ok )
Error( err );
}
void ACoth(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 1 )
Error( err_improper_amount_of_arguments );
ErrorCode err;
result = ttmath::ACoth(stack[sindex].value, &err);
if( err != err_ok )
Error( err );
}
void BitAnd(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 2 )
Error( err_improper_amount_of_arguments );
uint err;
result = stack[sindex].value;
err = result.BitAnd(stack[sindex+2].value);
switch(err)
{
case 1:
Error( err_overflow );
break;
case 2:
Error( err_improper_argument );
break;
}
}
void BitOr(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 2 )
Error( err_improper_amount_of_arguments );
uint err;
result = stack[sindex].value;
err = result.BitOr(stack[sindex+2].value);
switch(err)
{
case 1:
Error( err_overflow );
break;
case 2:
Error( err_improper_argument );
break;
}
}
void BitXor(int sindex, int amount_of_args, ValueType & result)
{
if( amount_of_args != 2 )
Error( err_improper_amount_of_arguments );
uint err;
result = stack[sindex].value;
err = result.BitXor(stack[sindex+2].value);
switch(err)
{
case 1:
Error( err_overflow );
break;
case 2:
Error( err_improper_argument );
break;
}
}
/*!
this method returns the value from a user-defined function
@@ -1178,6 +1306,19 @@ void CreateFunctionsTable()
InsertFunctionToTable(std::string("tgh"), &Parser<ValueType>::Tanh);
InsertFunctionToTable(std::string("coth"), &Parser<ValueType>::Coth);
InsertFunctionToTable(std::string("ctgh"), &Parser<ValueType>::Coth);
InsertFunctionToTable(std::string("root"), &Parser<ValueType>::Root);
InsertFunctionToTable(std::string("asinh"), &Parser<ValueType>::ASinh);
InsertFunctionToTable(std::string("acosh"), &Parser<ValueType>::ACosh);
InsertFunctionToTable(std::string("atanh"), &Parser<ValueType>::ATanh);
InsertFunctionToTable(std::string("atgh"), &Parser<ValueType>::ATanh);
InsertFunctionToTable(std::string("acoth"), &Parser<ValueType>::ACoth);
InsertFunctionToTable(std::string("actgh"), &Parser<ValueType>::ACoth);
InsertFunctionToTable(std::string("bitand"), &Parser<ValueType>::BitAnd);
InsertFunctionToTable(std::string("bitor"), &Parser<ValueType>::BitOr);
InsertFunctionToTable(std::string("bitxor"), &Parser<ValueType>::BitXor);
InsertFunctionToTable(std::string("band"), &Parser<ValueType>::BitAnd);
InsertFunctionToTable(std::string("bor"), &Parser<ValueType>::BitOr);
InsertFunctionToTable(std::string("bxor"), &Parser<ValueType>::BitXor);
}
@@ -1478,13 +1619,22 @@ void CreateMathematicalOperatorsTable()
}
bool CanBeMathematicalOperator(unsigned char c)
{
if( c=='|' || c=='&' || c=='!' || c=='=' || c=='<' || c=='>' ||
c=='*' || c=='/' || c=='+' || c=='-' || c=='^' )
return true;
/*!
returns true if 'str2' is the substring of str1
return false;
e.g.
true when str1="test" and str2="te"
*/
bool IsSubstring(const std::string & str1, const std::string & str2)
{
if( str2.length() > str1.length() )
return false;
for(std::string::size_type i=0 ; i<str2.length() ; ++i)
if( str1[i] != str2[i] )
return false;
return true;
}
@@ -1494,17 +1644,31 @@ return false;
void ReadMathematicalOperator(Item & result)
{
std::string oper;
typename OperatorsTable::iterator iter_old, iter_new;
for( ; CanBeMathematicalOperator(*pstring) ; ++pstring )
iter_old = operators_table.end();
for( ; true ; ++pstring )
{
oper += *pstring;
iter_new = operators_table.lower_bound(oper);
if( iter_new == operators_table.end() || !IsSubstring(iter_new->first, oper) )
{
oper.erase( --oper.end() ); // we've got mininum one element
typename OperatorsTable::iterator iter = operators_table.find(oper);
if( iter == operators_table.end() )
Error( err_unknown_operator );
result.type = Item::mat_operator;
result.moperator.SetType( iter->second );
if( iter_old != operators_table.end() && iter_old->first == oper )
{
result.type = Item::mat_operator;
result.moperator.SetType( iter_old->second );
break;
}
Error( err_unknown_operator );
}
iter_old = iter_new;
}
}
@@ -1535,10 +1699,7 @@ int ReadOperator(Item & result)
++pstring;
}
else
if( CanBeMathematicalOperator(*pstring) )
ReadMathematicalOperator(result);
else
Error( err_unknown_character );
return 0;
}
@@ -2113,7 +2274,6 @@ ErrorCode Parse(const char * str)
stack.resize( default_stack_size );
try
{
Parse();

View File

@@ -58,10 +58,14 @@
/*!
the version of the library
TTMATH_PRERELEASE_VER is either zero or one
if zero that means this is the release version of the library
*/
#define TTMATH_MAJOR_VER 0
#define TTMATH_MINOR_VER 8
#define TTMATH_REVISION_VER 0
#define TTMATH_REVISION_VER 1
#define TTMATH_PRERELEASE_VER 0
/*!

View File

@@ -819,7 +819,7 @@ public:
"leal (%%ebx,%%edx,4), %%ebx \n"
"movl %%esi, %%edx \n"
"movl %%esi, %%edx \n"
"clc \n"
"1: \n"
@@ -878,18 +878,31 @@ public:
}
private:
#ifdef TTMATH_PLATFORM32
/*!
this method moving once all bits into the left side
return value <- this <- C
this method moves all bits into the left hand side
return value <- this <- c
the lowest bit will hold value of 'c' and
function returns the highest bit
the lowest *bits* will be held the 'c' and
the state of one additional bit (on the left hand side)
will be returned
for example:
let this is 001010000
after Rcl2(3, 1) there'll be 010000111 and Rcl2 returns 1
*/
uint Rcl(uint c=0)
uint Rcl2(uint bits, uint c)
{
if( bits == 0 )
return 0;
TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
register sint b = value_size;
register uint * p1 = table;
@@ -900,12 +913,16 @@ public:
push eax
push ebx
push ecx
push edx
mov ecx,[b]
mov ebx,[p1]
mov edx, [bits]
a:
xor eax, eax
sub eax, [c]
mov eax,0
sub eax,[c]
mov ecx, [b]
mov ebx, [p1]
p:
rcl dword ptr[ebx],1
@@ -917,10 +934,15 @@ public:
loop p
dec edx
jnz a
mov eax,0
adc eax,eax
mov [c],eax
pop edx
pop ecx
pop ebx
pop eax
@@ -931,12 +953,16 @@ public:
#ifdef __GNUC__
__asm__ __volatile__(
"push %%esi \n"
"2: \n"
"xorl %%eax,%%eax \n"
"subl %%edx,%%eax \n"
"push %%ebx \n"
"push %%ecx \n"
"movl $0,%%eax \n"
"subl %%edx,%%eax \n"
"1: \n"
"rcll $1,(%%ebx) \n"
@@ -947,14 +973,20 @@ public:
"loop 1b \n"
"movl $0, %%edx \n"
"adcl %%edx,%%edx \n"
"pop %%ecx \n"
"pop %%ebx \n"
"decl %%esi \n"
"jnz 2b \n"
"movl $0, %%edx \n"
"adcl %%edx, %%edx \n"
"pop %%esi \n"
: "=d" (c)
: "0" (c), "c" (b), "b" (p1)
: "0" (c), "c" (b), "b" (p1), "S" (bits)
: "%eax", "cc", "memory" );
#endif
@@ -965,14 +997,24 @@ public:
/*!
this method moving once all bits into the right side
C -> *this -> return value
this method moves all bits into the right hand side
C -> this -> return value
the highest bit will be held value of 'c' and
function returns the lowest bit
the highest *bits* will be held the 'c' and
the state of one additional bit (on the right hand side)
will be returned
for example:
let this is 000000010
after Rcr2(2, 1) there'll be 110000000 and Rcr2 returns 1
*/
uint Rcr(uint c=0)
uint Rcr2(uint bits, uint c)
{
if( bits == 0 )
return 0;
TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
register sint b = value_size;
register uint * p1 = table;
@@ -983,15 +1025,19 @@ public:
push eax
push ebx
push ecx
push edx
mov edx,[bits]
a:
xor eax,eax
sub eax,[c]
mov ebx,[p1]
mov ecx,[b]
lea ebx,[ebx+4*ecx]
mov eax,0
sub eax,[c]
p:
dec ebx
dec ebx
@@ -1001,11 +1047,16 @@ public:
rcr dword ptr [ebx],1
loop p
dec edx
jnz a
mov eax,0
adc eax,eax
mov [c],eax
pop edx
pop ecx
pop ebx
pop eax
@@ -1016,12 +1067,17 @@ public:
#ifdef __GNUC__
__asm__ __volatile__(
"push %%esi \n"
"2: \n"
"push %%ebx \n"
"push %%ecx \n"
"leal (%%ebx,%%ecx,4),%%ebx \n"
"movl $0, %%eax \n"
"xorl %%eax, %%eax \n"
"subl %%edx, %%eax \n"
"1: \n"
@@ -1034,14 +1090,20 @@ public:
"loop 1b \n"
"movl $0, %%edx \n"
"adcl %%edx,%%edx \n"
"pop %%ecx \n"
"pop %%ebx \n"
"decl %%esi \n"
"jnz 2b \n"
"movl $0, %%edx \n"
"adcl %%edx, %%edx \n"
"pop %%esi \n"
: "=d" (c)
: "0" (c), "c" (b), "b" (p1)
: "0" (c), "c" (b), "b" (p1), "S" (bits)
: "%eax", "cc", "memory" );
#endif
@@ -1052,6 +1114,47 @@ public:
#endif
/*!
an auxiliary method for moving bits into the left hand side
this method moves only words
*/
void RclMoveAllWords( sint & all_words, uint & rest_bits, uint & last_c,
uint bits, uint c)
{
rest_bits = sint(bits % TTMATH_BITS_PER_UINT);
all_words = sint(bits / TTMATH_BITS_PER_UINT);
if( all_words >= sint(value_size) )
{
if( all_words==value_size && rest_bits==0 )
last_c = table[0] & 1;
all_words = value_size; // not value_size - 1
rest_bits = 0;
}
if( all_words > 0 )
{
sint first;
sint second;
last_c = table[value_size - all_words] & 1; // all_words is greater than 0
// copying the first part of the value
for(first = value_size-1, second=first-all_words ; second>=0 ; --first, --second)
table[first] = table[second];
// sets the rest bits of value into 'c'
uint mask = c ? TTMATH_UINT_MAX_VALUE : 0;
for( ; first>=0 ; --first )
table[first] = mask;
}
}
public:
/*!
this method moving all bits into the left side 'bits' times
return value <- this <- C
@@ -1062,39 +1165,92 @@ public:
the value c will be set into the lowest bits
and the method returns state of the last moved bit
*/
uint Rcl(uint bits, uint c)
uint Rcl(uint bits, uint c=0)
{
sint first;
sint second;
uint last_c = 0;
if( bits > value_size*TTMATH_BITS_PER_UINT )
bits = value_size*TTMATH_BITS_PER_UINT;
sint all_words = 0;
uint rest_bits = bits;
sint all_words = sint(bits) / sint(TTMATH_BITS_PER_UINT);
if( bits >= TTMATH_BITS_PER_UINT )
RclMoveAllWords(all_words, rest_bits, last_c, bits, c);
if( all_words > 0 )
// rest_bits is from 0 to TTMATH_BITS_PER_UINT-1 now
if( rest_bits > 0 )
{
// copying the first part of the value
for(first = value_size-1, second=first-all_words ; second>=0 ; --first, --second)
// if rest_bits is greater than a half of TTMATH_BITS_PER_UINT
// we're moving bits into the right hand side
// (TTMATH_BITS_PER_UINT-rest_bits) times
// and then we're moving one word into left
if( rest_bits > TTMATH_BITS_PER_UINT/2 + 1 )
{
last_c = table[first] & 1;
table[first] = table[second];
uint temp = table[0];
Rcr2(TTMATH_BITS_PER_UINT-rest_bits,0);
last_c = table[value_size-1] & 1;
for(uint i=value_size-1 ; i>0 ; --i)
table[i] = table[i-1];
table[0] = temp << rest_bits;
if( c )
{
uint mask = TTMATH_UINT_MAX_VALUE << rest_bits;
table[0] |= ~mask;
}
}
else
{
last_c = Rcl2(rest_bits, c);
}
// sets the rest bits of value into 'c'
uint mask = (c!=0)? TTMATH_UINT_MAX_VALUE : 0;
for( ; first>=0 ; --first )
table[first] = mask;
}
sint rest_bits = sint(bits) % sint(TTMATH_BITS_PER_UINT);
for( ; rest_bits > 0 ; --rest_bits )
last_c = Rcl(c);
return last_c;
}
private:
/*!
an auxiliary method for moving bits into the right hand side
this method moves only words
*/
void RcrMoveAllWords( sint & all_words, uint & rest_bits, uint & last_c,
uint bits, uint c)
{
rest_bits = sint(bits % TTMATH_BITS_PER_UINT);
all_words = sint(bits / TTMATH_BITS_PER_UINT);
if( all_words >= sint(value_size) )
{
if( all_words==value_size && rest_bits==0 )
last_c = (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
all_words = value_size; // not value_size - 1
rest_bits = 0;
}
if( all_words > 0 )
{
uint first;
uint second;
last_c = (table[all_words - 1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0; // all_words is > 0
// copying the first part of the value
for(first=0, second=all_words ; second<value_size ; ++first, ++second)
table[first] = table[second];
// sets the rest bits of value into 'c'
uint mask = c ? TTMATH_UINT_MAX_VALUE : 0;
for( ; first<value_size ; ++first )
table[first] = mask;
}
}
public:
/*!
this method moving all bits into the right side 'bits' times
@@ -1106,39 +1262,42 @@ public:
the value c will be set into the highest bits
and the method returns state of the last moved bit
*/
uint Rcr(uint bits, uint c)
uint Rcr(uint bits, uint c=0)
{
sint first;
sint second;
sint last_c = 0;
uint last_c = 0;
sint all_words = 0;
uint rest_bits = bits;
if( bits > value_size*TTMATH_BITS_PER_UINT )
bits = value_size*TTMATH_BITS_PER_UINT;
if( bits >= TTMATH_BITS_PER_UINT )
RcrMoveAllWords(all_words, rest_bits, last_c, bits, c);
sint all_words = sint(bits) / sint(TTMATH_BITS_PER_UINT);
if( all_words > 0 )
// rest_bits is from 0 to TTMATH_BITS_PER_UINT-1 now
if( rest_bits > 0 )
{
// copying the first part of the value
for(first=0, second=all_words ; second<sint(value_size) ; ++first, ++second)
if( rest_bits > TTMATH_BITS_PER_UINT/2 + 1 )
{
last_c = table[first] & TTMATH_UINT_HIGHEST_BIT;
table[first] = table[second];
uint temp = table[value_size-1];
Rcl2(TTMATH_BITS_PER_UINT-rest_bits,0);
last_c = (table[0] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0;
for(uint i=0 ; i<value_size-1 ; ++i)
table[i] = table[i+1];
table[value_size-1] = temp >> rest_bits;
if( c )
{
uint mask = TTMATH_UINT_MAX_VALUE >> rest_bits;
table[value_size-1] |= ~mask;
}
}
else
{
last_c = Rcr2(rest_bits, c);
}
if( last_c )
last_c = 1;
// sets the rest bits of value into 'c'
uint mask = (c!=0)? TTMATH_UINT_MAX_VALUE : 0;
for( ; first<sint(value_size) ; ++first )
table[first] = mask;
}
sint rest_bits = sint(bits) % sint(TTMATH_BITS_PER_UINT);
for( ; rest_bits > 0 ; --rest_bits )
last_c = Rcr(c);
return last_c;
}
@@ -1175,14 +1334,14 @@ public:
table[i] = 0;
}
// moving the rest bits (max TTMATH_BITS_PER_UINT -- only one word)
while( !IsTheHighestBitSet() )
{
Rcl();
++moving;
}
uint moving2 = FindLeadingBitInWord( table[value_size-1] );
// moving2 is different from -1 because the value table[value_size-1]
// is not zero
return moving;
moving2 = TTMATH_BITS_PER_UINT - moving2 - 1;
Rcl(moving2);
return moving + moving2;
}
@@ -1330,6 +1489,48 @@ public:
}
/*!
this method performs a bitwise operation AND
*/
void BitAnd(const UInt<value_size> & ss2)
{
for(uint x=0 ; x<value_size ; ++x)
table[x] &= ss2.table[x];
}
/*!
this method performs a bitwise operation OR
*/
void BitOr(const UInt<value_size> & ss2)
{
for(uint x=0 ; x<value_size ; ++x)
table[x] |= ss2.table[x];
}
/*!
this method performs a bitwise operation XOR
*/
void BitXor(const UInt<value_size> & ss2)
{
for(uint x=0 ; x<value_size ; ++x)
table[x] ^= ss2.table[x];
}
/*!
this method performs a bitwise operation NOT
*/
void BitNot()
{
for(uint x=0 ; x<value_size ; ++x)
table[x] = ~table[x];
}
/*!
*
* Multiplication
@@ -1340,7 +1541,7 @@ public:
public:
#ifdef TTMATH_PLATFORM32
@@ -1442,6 +1643,47 @@ public:
return 0;
}
/*!
multiplication: result = this * ss2
we're using this method only when result_size is greater than value_size
if so there will not be a carry
*/
template<uint result_size>
uint MulInt(uint ss2, UInt<result_size> & result)
{
uint r2,r1;
uint x1size=value_size;
uint x1start=0;
if( value_size >= result_size )
return 1;
result.SetZero();
if( value_size > 2 )
{
// if the value_size is smaller than or equal to 2
// there is no sense to set x1size and x1start to another values
for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size);
if( x1size==0 )
return 0;
for(x1start=0 ; x1start<x1size && table[x1start]==0 ; ++x1start);
}
for(uint x1=x1start ; x1<x1size ; ++x1)
{
MulTwoWords(table[x1], ss2, &r2, &r1 );
result.AddTwoInts(r2,r1,x1);
}
return 0;
}
/*!
the multiplication 'this' = 'this' * ss2
@@ -1504,7 +1746,7 @@ public:
if( Add(*this) )
return 1;
if( ss1.Rcl() )
if( ss1.Rcl(1) )
if( Add(ss2) )
return 1;
}
@@ -1893,7 +2135,7 @@ private:
div_a:
c = Rcl(c);
c = Rcl(1, c);
c = rest.Add(rest,c);
c = rest.Sub(divisor,c);
@@ -1908,12 +2150,12 @@ private:
if(loop)
goto div_a;
c = Rcl(c);
c = Rcl(1, c);
return 0;
div_c:
c = Rcl(c);
c = Rcl(1, c);
c = rest.Add(rest,c);
c = rest.Add(divisor);
@@ -1926,7 +2168,7 @@ private:
if(loop)
goto div_c;
c = Rcl(c);
c = Rcl(1, c);
c = rest.Add(divisor);
return 0;
@@ -2007,7 +2249,7 @@ private:
if( CmpSmaller(divisor_copy, table_id) )
{
divisor_copy.Rcr();
divisor_copy.Rcr(1);
--bits_diff;
}
@@ -2283,16 +2525,17 @@ private:
{
uint c = 0;
// !!!!!!!!! change
for( d = 0 ; (v.table[n-1] & TTMATH_UINT_HIGHEST_BIT) == 0 ; ++d )
{
// we can move the bits only to the 'n-1' index but at the moment
// we don't have such method
// maybe it's time to write it now?
v.Rcl(0);
v.Rcl(1, 0);
c <<= 1;
if( Rcl(0) )
if( Rcl(1, 0) )
c += 1;
}
@@ -3183,6 +3426,11 @@ public:
#ifdef TTMATH_PLATFORM64
private:
uint Rcl2(uint bits, uint c);
uint Rcr2(uint bits, uint c);
public:
// these methods are for 64bit processors and are defined in 'ttmathuint64.h'
UInt<value_size> & operator=(unsigned int i);
UInt(unsigned int i);
@@ -3194,8 +3442,6 @@ public:
uint AddTwoInts(uint x2, uint x1, uint index);
uint Sub(const UInt<value_size> & ss2, uint c=0);
uint SubInt(uint value, uint index = 0);
uint Rcl(uint c=0);
uint Rcr(uint c=0);
static sint FindLeadingBitInWord(uint x);
static uint SetBitInWord(uint value, uint bit);
static void MulTwoWords(uint a, uint b, uint * result2, uint * result1);

View File

@@ -416,7 +416,7 @@ namespace ttmath
"movq $0, %%rdx \n"
"movq (%%rbx), %%rax \n"
"addq %%rsi, %%rax \n"
"addq %%rsi, %%rax \n"
"movq %%rax, (%%rbx) \n"
"inc %%rbx \n"
@@ -429,7 +429,7 @@ namespace ttmath
"inc %%rbx \n"
"movq (%%rbx), %%rax \n"
"adcq %%rdi, %%rax \n"
"adcq %%rdi, %%rax \n"
"movq %%rax, (%%rbx) \n"
"jnc 2f \n"
@@ -638,17 +638,27 @@ namespace ttmath
/*!
this method moving once all bits into the left side
return value <- this <- C
this method moves all bits into the left hand side
return value <- this <- c
the lowest *bits* will be held the 'c' and
the state of one additional bit (on the left hand side)
will be returned
for example:
let this is 001010000
after Rcl2(3, 1) there'll be 010000111 and Rcl2 returns 1
***this method is created only on a 64bit platform***
the lowest bit will hold value of 'c' and
function returns the highest bit
*/
template<uint value_size>
uint UInt<value_size>::Rcl(uint c)
uint UInt<value_size>::Rcl2(uint bits, uint c)
{
if( bits == 0 )
return 0;
TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
register sint b = value_size;
register uint * p1 = table;
@@ -659,12 +669,17 @@ namespace ttmath
#ifdef __GNUC__
__asm__ __volatile__(
"push %%rsi \n"
"2: \n"
"xorq %%rax,%%rax \n"
"subq %%rdx,%%rax \n"
"push %%rbx \n"
"push %%rcx \n"
"movq $0,%%rax \n"
"subq %%rdx,%%rax \n"
"1: \n"
"rclq $1,(%%rbx) \n"
@@ -679,14 +694,20 @@ namespace ttmath
"loop 1b \n"
"movq $0, %%rdx \n"
"adcq %%rdx,%%rdx \n"
"pop %%rcx \n"
"pop %%rbx \n"
"decq %%rsi \n"
"jnz 2b \n"
"movq $0, %%rdx \n"
"adcq %%rdx, %%rdx \n"
"pop %%rsi \n"
: "=d" (c)
: "0" (c), "c" (b), "b" (p1)
: "0" (c), "c" (b), "b" (p1), "S" (bits)
: "%rax", "cc", "memory" );
#endif
@@ -697,17 +718,27 @@ namespace ttmath
/*!
this method moving once all bits into the right side
C -> *this -> return value
this method moves all bits into the right hand side
C -> this -> return value
the highest *bits* will be held the 'c' and
the state of one additional bit (on the right hand side)
will be returned
for example:
let this is 000000010
after Rcr2(2, 1) there'll be 110000000 and Rcr2 returns 1
***this method is created only on a 64bit platform***
the highest bit will be held value of 'c' and
function returns the lowest bit
*/
template<uint value_size>
uint UInt<value_size>::Rcr(uint c)
uint UInt<value_size>::Rcr2(uint bits, uint c)
{
if( bits == 0 )
return 0;
TTMATH_ASSERT( bits>0 && bits<TTMATH_BITS_PER_UINT )
register sint b = value_size;
register uint * p1 = table;
@@ -720,12 +751,18 @@ namespace ttmath
#ifdef __GNUC__
__asm__ __volatile__(
"push %%rsi \n"
"2: \n"
"push %%rbx \n"
"push %%rcx \n"
"leaq (%%rbx,%%rcx,8),%%rbx \n"
"movq $0, %%rax \n"
"xorq %%rax, %%rax \n"
"subq %%rdx, %%rax \n"
"1: \n"
@@ -742,14 +779,20 @@ namespace ttmath
"loop 1b \n"
"movq $0, %%rdx \n"
"adcq %%rdx,%%rdx \n"
"pop %%rcx \n"
"pop %%rbx \n"
"decq %%rsi \n"
"jnz 2b \n"
"movq $0, %%rdx \n"
"adcq %%rdx,%%rdx \n"
"pop %%rsi \n"
: "=d" (c)
: "0" (c), "c" (b), "b" (p1)
: "0" (c), "c" (b), "b" (p1), "S" (bits)
: "%rax", "cc", "memory" );
#endif