ttmath/ttmath/ttmathtypes.h

461 lines
12 KiB
C++

/*
* This file is a part of TTMath Bignum Library
* and is distributed under the (new) BSD licence.
* Author: Tomasz Sowa <t.sowa@slimaczek.pl>
*/
/*
* Copyright (c) 2006-2009, Tomasz Sowa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name Tomasz Sowa nor the names of contributors to this
* project may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef headerfilettmathtypes
#define headerfilettmathtypes
/*!
\file ttmathtypes.h
\brief constants used in the library
As our library is written in header files (templates) we cannot use
constants like 'const int' etc. because we should have some source files
*.cpp to define this variables. Only what we can have are constants
defined by #define preprocessor macros.
All macros are preceded by TTMATH_ prefix
*/
#include <stdexcept>
#include <sstream>
/*!
the version of the library
TTMATH_PRERELEASE_VER is either zero or one
if zero that means this is the release version of the library
*/
#define TTMATH_MAJOR_VER 0
#define TTMATH_MINOR_VER 8
#define TTMATH_REVISION_VER 6
#define TTMATH_PRERELEASE_VER 0
/*!
TTMATH_DEBUG
this macro enables further testing during writing your code
you don't have to define it in a release mode
if this macro is set then macros TTMATH_ASSERT and TTMATH_REFERENCE_ASSERT
are set as well and these macros can throw an exception if a condition in it
is not fulfilled (look at the definition of TTMATH_ASSERT and TTMATH_REFERENCE_ASSERT)
TTMATH_RELEASE
if you are confident that your code is perfect you can define TTMATH_RELEASE
macro for example by using -D option in gcc
gcc -DTTMATH_RELEASE -o myprogram myprogram.cpp
or by defining this macro in your code before using any header files of this library
if TTMATH_RELEASE is not set then TTMATH_DEBUG is set automatically
*/
#ifndef TTMATH_RELEASE
#define TTMATH_DEBUG
#endif
namespace ttmath
{
#if !defined _M_X64 && !defined __x86_64__
/*!
we're using a 32bit platform
*/
#define TTMATH_PLATFORM32
#else
/*!
we're using a 64bit platform
*/
#define TTMATH_PLATFORM64
#endif
#ifdef TTMATH_PLATFORM32
/*!
on 32bit platforms one word (uint, sint) will be equal 32bits
*/
typedef unsigned int uint;
typedef signed int sint;
/*!
this type is twice bigger than uint
(64bit on a 32bit platforms)
although C++ Standard - ANSI ISO IEC 14882:2003 doesn't define such a type (long long)
but it is defined in C99 and in upcoming C++0x /3.9.1 (2)/ and many compilers support it
this type is used in UInt::MulTwoWords and UInt::DivTwoWords when macro TTMATH_NOASM is defined
but only on a 32bit platform
*/
#ifdef TTMATH_NOASM
typedef unsigned long long int ulint;
#endif
/*!
how many bits there are in the uint type
*/
#define TTMATH_BITS_PER_UINT 32u
/*!
the mask for the highest bit in the unsigned 32bit word (2^31)
*/
#define TTMATH_UINT_HIGHEST_BIT 2147483648u
/*!
the max value of the unsigned 32bit word (2^32 - 1)
(all bits equal one)
*/
#define TTMATH_UINT_MAX_VALUE 4294967295u
/*!
the number of words (32bit words on 32bit platform)
which are kept in built-in variables for a Big<> type
(these variables are defined in ttmathbig.h)
*/
#define TTMATH_BUILTIN_VARIABLES_SIZE 256u
#else
/*!
on 64bit platforms one word (uint, sint) will be equal 64bits
*/
typedef unsigned long uint;
typedef signed long sint;
/*!
on 64bit platform we do not define ulint
sizeof(long long) is 8 (64bit) but we need 128bit
on 64 bit platform (when there is defined TTMATH_NOASM macro)
methods UInt::MulTwoWords and UInt::DivTwoWords are using other algorithms than those on 32 bit
*/
//typedef unsigned long long int ulint;
/*!
how many bits there are in the uint type
*/
#define TTMATH_BITS_PER_UINT 64ul
/*!
the mask for the highest bit in the unsigned 64bit word (2^63)
*/
#define TTMATH_UINT_HIGHEST_BIT 9223372036854775808ul
/*!
the max value of the unsigned 64bit word (2^64 - 1)
(all bits equal one)
*/
#define TTMATH_UINT_MAX_VALUE 18446744073709551615ul
/*!
the number of words (64bit words on 64bit platforms)
which are kept in built-in variables for a Big<> type
(these variables are defined in ttmathbig.h)
*/
#define TTMATH_BUILTIN_VARIABLES_SIZE 128ul
#endif
}
/*!
characters which represent the comma operator
TTMATH_COMMA_CHARACTER_1 is used in reading (parsing) and in writing (default, can be overwritten in ToString() function)
TTMATH_COMMA_CHARACTER_2 can be used in reading as an auxiliary comma character
that means you can input values for example 1.2345 and 1,2345 as well
if you don't want it just put 0 there e.g.
#define TTMATH_COMMA_CHARACTER_2 0
then only TTMATH_COMMA_CHARACTER_1 will be used
don't put there any special character which is used by the parser
(for example a semicolon ';' shouldn't be there)
*/
#define TTMATH_COMMA_CHARACTER_1 '.'
#define TTMATH_COMMA_CHARACTER_2 ','
/*!
this variable defines how many iterations are performed
during some kind of calculating when we're making any long formulas
(for example Taylor series)
it's used in ExpSurrounding0(...), LnSurrounding1(...), Sin0pi05(...), etc.
note! there'll not be so many iterations, iterations are stopped when
there is no sense to continue calculating (for example when the result
still remains unchanged after adding next series and we know that the next
series are smaller than previous ones)
*/
#define TTMATH_ARITHMETIC_MAX_LOOP 10000
/*!
this is a limit when calculating Karatsuba multiplication
if the size of a vector is smaller than TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE
the Karatsuba algorithm will use standard schoolbook multiplication
*/
#ifdef __GNUC__
#define TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE 3
#else
#define TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE 5
#endif
namespace ttmath
{
/*!
error codes
*/
enum ErrorCode
{
err_ok = 0,
err_nothing_has_read,
err_unknown_character,
err_unexpected_final_bracket,
err_stack_not_clear,
err_unknown_variable,
err_division_by_zero,
err_interrupt,
err_overflow,
err_unknown_function,
err_unknown_operator,
err_unexpected_semicolon_operator,
err_improper_amount_of_arguments,
err_improper_argument,
err_unexpected_end,
err_internal_error,
err_incorrect_name,
err_incorrect_value,
err_variable_exists,
err_variable_loop,
err_functions_loop,
err_must_be_only_one_value,
err_object_exists,
err_unknown_object,
err_still_calculating,
err_too_big_factorial,
err_in_short_form_used_function
};
/*!
this simple class can be used in multithreading model
(you can write your own class derived from this one)
for example: in some functions like Factorial()
/at the moment only Factorial/ you can give a pointer to
the 'stop object', if the method WasStopSignal() of this
object returns true that means we should break the calculating
and return
*/
class StopCalculating
{
public:
virtual bool WasStopSignal() const volatile { return false; }
virtual ~StopCalculating(){}
};
/*!
a small class which is useful when compiling with gcc
object of this type holds the name and the line of a file
in which the macro TTMATH_ASSERT or TTMATH_REFERENCE_ASSERT was used
*/
class ExceptionInfo
{
const char * file;
int line;
public:
ExceptionInfo() : file(0), line(0) {}
ExceptionInfo(const char * f, int l) : file(f), line(l) {}
std::string Where() const
{
if( !file )
return "unknown";
std::ostringstream result;
result << file << ":" << line;
return result.str();
}
};
/*!
A small class used for reporting 'reference' errors
In the library is used macro TTMATH_REFERENCE_ASSERT which
can throw an exception of this type
If you compile with gcc you can get a small benefit
from using method Where() (it returns std::string with
the name and the line of a file where the macro TTMATH_REFERENCE_ASSERT
was used)
What is the 'reference' error?
Some kind of methods use a reference as their argument to another object,
and the another object not always can be the same which is calling, e.g.
Big<1,2> foo(10);
foo.Mul(foo); // this is incorrect
above method Mul is making something more with 'this' object and
'this' cannot be passed as the argument because the result will be undefined
macro TTMATH_REFERENCE_ASSERT helps us to solve the above problem
note! some methods can use 'this' object as the argument
for example this code is correct:
UInt<2> foo(10);
foo.Add(foo);
but there are only few methods which can do that
*/
class ReferenceError : public std::logic_error, public ExceptionInfo
{
public:
ReferenceError() : std::logic_error ("reference error")
{
}
ReferenceError(const char * f, int l) :
std::logic_error ("reference error"), ExceptionInfo(f,l)
{
}
std::string Where() const
{
return ExceptionInfo::Where();
}
};
/*!
a small class used for reporting errors
in the library is used macro TTMATH_ASSERT which
(if the condition in it is false) throw an exception
of this type
if you compile with gcc you can get a small benefit
from using method Where() (it returns std::string with
the name and the line of a file where the macro TTMATH_ASSERT
was used)
*/
class RuntimeError : public std::runtime_error, public ExceptionInfo
{
public:
RuntimeError() : std::runtime_error ("internal error")
{
}
RuntimeError(const char * f, int l) :
std::runtime_error ("internal error"), ExceptionInfo(f,l)
{
}
std::string Where() const
{
return ExceptionInfo::Where();
}
};
/*!
look at the description of macros TTMATH_RELEASE and TTMATH_DEBUG
*/
#ifdef TTMATH_DEBUG
#if defined(__FILE__) && defined(__LINE__)
#define TTMATH_REFERENCE_ASSERT(expression) \
if( &(expression) == this ) throw ttmath::ReferenceError(__FILE__, __LINE__);
#define TTMATH_ASSERT(expression) \
if( !(expression) ) throw ttmath::RuntimeError(__FILE__, __LINE__);
#else
#define TTMATH_REFERENCE_ASSERT(expression) \
if( &(expression) == this ) throw ReferenceError();
#define TTMATH_ASSERT(expression) \
if( !(expression) ) throw RuntimeError();
#endif
#else
#define TTMATH_REFERENCE_ASSERT(expression)
#define TTMATH_ASSERT(expression)
#endif
#ifdef TTMATH_DEBUG_LOG
#define TTMATH_LOG(msg) \
PrintLog(msg, std::cout);
#else
#define TTMATH_LOG(msg)
#endif
} // namespace
#endif