Files
ttcalc/help/arithmetic_functions.html
Tomasz Sowa ff62d833c9 fixed: calculating the size of the main window
now it looks good on MS Vista and when a user changes size of some
         widgets such as a border, font size, etc.
added:   spanish language to the setup (installer)
added:   the setup will remove mingwm10.dll if it exists in the program directory
added:   on display tab: we can select 'deg' 'rad' or 'grad' for calculating
         in such functions: sin,cos,tan,cot,asin,acos,atan,acot
added:   macro TTCALC_CONVERT if not defined there will not be a convert tab
         (the convert tab is not finished)
added:   a new icon with following dimensions: '48x48' '32x32' '16x16'
removed: parameter for gcc: -mthreads
         with -mthreads it is possible (on windows) to release some kind of
         'destructors' belonging to a thread when the specific thread exists
         (it prevents some kind of memory leaks)
         in the TTCalc when the second thread exists then there is the end
         of the program and we can not use '-mthreads'
removed: file TODO (I didn't use the file)


git-svn-id: svn://ttmath.org/publicrep/ttcalc/trunk@114 e52654a7-88a9-db11-a3e9-0013d4bc506e
2009-03-28 18:26:20 +00:00

209 lines
7.1 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
<head>
<title>TTCalc - arithmetic functions</title>
<link rel="stylesheet" href="styles.css" type="text/css">
<object type="application/x-oleobject" classid="clsid:1e2a7bd0-dab9-11d0-b93a-00c04fc99f9e">
<param name="Keyword" value="ln">
<param name="Keyword" value="log">
<param name="Keyword" value="exp">
<param name="Keyword" value="sin">
<param name="Keyword" value="cos">
<param name="Keyword" value="tan">
<param name="Keyword" value="tg">
<param name="Keyword" value="cot">
<param name="Keyword" value="ctg">
<param name="Keyword" value="asin">
<param name="Keyword" value="acos">
<param name="Keyword" value="atan">
<param name="Keyword" value="atg">
<param name="Keyword" value="acot">
<param name="Keyword" value="actg">
<param name="Keyword" value="sinh">
<param name="Keyword" value="cosh">
<param name="Keyword" value="tanh">
<param name="Keyword" value="tgh">
<param name="Keyword" value="coth">
<param name="Keyword" value="ctgh">
<param name="Keyword" value="asinh">
<param name="Keyword" value="acosh">
<param name="Keyword" value="atanh">
<param name="Keyword" value="atgh">
<param name="Keyword" value="acoth">
<param name="Keyword" value="actgh">
<param name="Keyword" value="degtodeg">
<param name="Keyword" value="degtorad">
<param name="Keyword" value="radtodeg">
<param name="Keyword" value="sqrt">
<param name="Keyword" value="root">
<param name="Keyword" value="factorial">
<param name="Keyword" value="abs">
<param name="Keyword" value="sgn">
<param name="Keyword" value="mod">
<param name="Keyword" value="int">
<param name="Keyword" value="round">
<param name="Keyword" value="ceil">
<param name="Keyword" value="floar">
<param name="Keyword" value="max">
<param name="Keyword" value="min">
<param name="Keyword" value="builtin functions">
<param name="Keyword" value="sum">
<param name="Keyword" value="avg">
</object>
</head>
<body>
<h1>Arithmetic functions</h1>
<p><strong>Note:</strong> If a function takes more than one argument, the arguments are separated with semicolon ';'.</p>
<dl>
<dt>ln(x)</dt>
<dd>This function calculates the natural logarithm of x,<br>e.g. ln(123)=4.812...</dd>
<dt>log(x; base)</dt>
<dd>This function calculates the logarithm of x with a base equal 'base'<br>log(123; 4)=3.471...</dd>
<dt>exp(x)</dt>
<dd>This function calculates the exponent of x<br>exp(20)=e^20=485165195.409...</dd>
<dt>sin(x)</dt>
<dd>This function returns the sine of x.<br>For example sin(0.8)=0.717...<br>The argument x is in radians, if you want to calculate
with degrees use the degtorad(x) function first e.g. sin(degtorad(30))=0.5 calculates the sine of 30 degrees.</dd>
<dt>cos(x)</dt>
<dd>Cosine of x<br>cos(1.3)=0.267...<br>The argument x is in radians.</dd>
<dt>tan(x) or tg(x)</dt>
<dd>Tangent of x<br>tan(3.6)=0.493...<br>The argument x is in radians.</dd>
<dt>cot(x) or ctg(x)</dt>
<dd>Cotangent of x<br>cot(2.3)=-0.893...<br>The argument x is in radians.</dd>
<dt>asin(x)</dt>
<dd>Inverse sine (arc sine) of x<br>e.g. asin(0.7)=0.775...<br>The result is in radians. If you want the result to be in degrees use
radtodeg function e.g. radtodeg(asin(0,5))=30</dd>
<dt>acos(x)</dt>
<dd>Inverse cosine (arc cosine) of x<br>acos(0.9)=0.451...<br>The result is in radians.</dd>
<dt>atan(x) or atg(x)</dt>
<dd>Inverse tangent (arc tangent) of x<br>atan(3.3)=1.276...<br>The result is in radians.</dd>
<dt>acot(x) or actg(x)</dt>
<dd>Inverse cotangent (arc cotangent) of x<br>acot(10)=0.099...<br>The result is in radians.</dd>
<dt>sinh(x)</dt>
<dd>This function returns hyperbolic sine of x<br>sinh(12)=81377.395...</dd>
<dt>cosh(x)</dt>
<dd>Hyperbolic cosine of x<br>cosh(8.5)=2457.384...</dd>
<dt>tanh(x) or tgh(x)</dt>
<dd>Hyperbolic tangent of x<br>tanh(0.67)=0.584...</dd>
<dt>coth(x) or ctgh(x)</dt>
<dd>Hyperbolic cotangent of x<br>coth(1.67)=1.073...</dd>
<dt>asinh(x)</dt>
<dd>This function returns inverse hyperbolic sine of x<br>asinh(3.6)=1.992...</dd>
<dt>acosh(x)</dt>
<dd>This function returns inverse hyperbolic cosine of x<br>acosh(2.23)=1.440...</dd>
<dt>atanh(x) or atgh(x)</dt>
<dd>This function returns inverse hyperbolic tangent of x<br>atanh(0.67)=0.810...</dd>
<dt>acoth(x) or actgh(x)</dt>
<dd>This function returns inverse hyperbolic cotangent of x<br>acoth(1.23)=1.135...</dd>
<dt>DegToDeg(deg; min; sec)</dt>
<dd>This function converts degrees from the long format with degres, minutes and seconds into only degrees.<br>
For example degtodeg(12; 30; 0)=12.5</dd>
<dt>DegToRad(deg)</dt>
<dd>This function converts degrees into radians<br>degtorad(12.5)=0.218166...</dd>
<dt>DegToRad(deg; min; sec)</dt>
<dd>This function converts degrees in the long format (degrees, minutes, seconds) to radians.<br>For example
degtorad(12; 30; 0)=0.218166...</dd>
<dt>RadToDeg(rad)</dt>
<dd>This function converts radians into degrees<br>radtodeg(pi)=180</dd>
<dt>sqrt(x)</dt>
<dd>Sqrt returns the square root of x<br>sqrt(9)=3</dd>
<dt>root(x ; n)</dt>
<dd>The nth root of a 'x', 'n' must be integer and not negative, if 'n' is zero the result is one,
if 'x' is zero the result is zero and we assume that the root(0;0) is not defined, e.g.<br>
root(8;3)=2<br>
root(-8;3)=-2
</dd>
<dt>factorial(x)</dt>
<dd>The factorial function<br>factorial(6)=1*2*3*4*5*6=720</dd>
<dt>abs(x)</dt>
<dd>The absolute value of x<br>abs(-10)=10</dd>
<dt>sgn(x)</dt>
<dd>This function returns the sign of x that means when the x is positive the result is 1, when the x is negative
the result is -1 and when the x is zero the result is zero too<br>
sgn(-10)=-1<br>
sgn(0)=0<br>
sgn(5)=1</dd>
<dt>mod(x,y)</dt>
<dd>Mod returns the remainder from the division x by y<br>mod(10; 2.2)=1.2 because 10=2.2*4 + 1.2</dd>
<dt>int(x)</dt>
<dd>This method returns only the integer part of x.<br>int(2.7)=2</dd>
<dt>round(x)</dt>
<dd>This method rounds the value of x to the nearest integer<br>
round(2.8)=3<br>
round(2.2)=2<br>
round(2)=2<br>
round(-4.8)=-5<br>
round(-4.1)=-4</dd>
<dt>ceil(x)</dt>
<dd>This function returns a value representing the smallest integer that is greater than or equal to x<br>
ceil(2.8)=3<br>
ceil(2.2)=3<br>
ceil(2)=2<br>
ceil(-4.8)=-4<br>
ceil(-4.1)=-4</dd>
<dt>floor(x)</dt>
<dd>This function returns a value representing the largest integer that is less than or equal to x<br>
floor(2.8)=2<br>
floor(2.2)=2<br>
floor(2)=2<br>
floor(-4.8)=-5<br>
floor(-4.1)=-5</dd>
<dt>max(x1; x2; ...)</dt>
<dd>This functions takes any number of arguments. It returns the max value of them. If there aren't arguments
the function returns the max value which can be held in this precision.</dd>
<dt>min(x1; x2; ...)</dt>
<dd>This functions takes any number of arguments. It returns the min value of them. If there aren't arguments
the function returns the min value which can be held in this precision.</dd>
<dt>sum(x1; x2; ...)</dt>
<dd>This functions takes one or more arguments. It returns the sum of them.</dd>
<dt>avg(x1; x2; ...)</dt>
<dd>This functions takes one or more arguments. It returns the arithmetic mean. (The sum divided by
the number of arguments)</dd>
</dl>
</body>
</html>